Endoglin potentiates nitric oxide synthesis to enhance definitive hematopoiesis

نویسندگان

  • Rabab Nasrallah
  • Kathy Knezevic
  • Thuan Thai
  • Shane R. Thomas
  • Berthold Göttgens
  • Georges Lacaud
  • Valerie Kouskoff
  • John E. Pimanda
چکیده

During embryonic development, hematopoietic cells develop by a process of endothelial-to hematopoietic transition of a specialized population of endothelial cells. These hemogenic endothelium (HE) cells in turn develop from a primitive population of FLK1(+) mesodermal cells. Endoglin (ENG) is an accessory TGF-β receptor that is enriched on the surface of endothelial and hematopoietic stem cells and is also required for the normal development of hemogenic precursors. However, the functional role of ENG during the transition of FLK1(+) mesoderm to hematopoietic cells is ill defined. To address this we used a murine embryonic stem cell model that has been shown to mirror the temporal emergence of these cells in the embryo. We noted that FLK1(+) mesodermal cells expressing ENG generated fewer blast colony-forming cells but had increased hemogenic potential when compared with ENG non-expressing cells. TIE2(+)/CD117(+) HE cells expressing ENG also showed increased hemogenic potential compared with non-expressing cells. To evaluate whether high ENG expression accelerates hematopoiesis, we generated an inducible ENG expressing ES cell line and forced expression in FLK1(+) mesodermal or TIE2(+)/CD117(+) HE cells. High ENG expression at both stages accelerated the emergence of CD45(+) definitive hematopoietic cells. High ENG expression was associated with increased pSMAD2/eNOS expression and NO synthesis in hemogenic precursors. Inhibition of eNOS blunted the ENG induced increase in definitive hematopoiesis. Taken together, these data show that ENG potentiates the emergence of definitive hematopoietic cells by modulating TGF-β/pSMAD2 signalling and increasing eNOS/NO synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio11494 819..829

During embryonic development, hematopoietic cells develop by a process of endothelial-to hematopoietic transition of a specialized population of endothelial cells. These hemogenic endothelium (HE) cells in turn develop from a primitive population of FLK1 mesodermal cells. Endoglin (ENG) is an accessory TGF-β receptor that is enriched on the surface of endothelial and hematopoietic stem cells an...

متن کامل

Bio11494 1..11

During embryonic development, hematopoietic cells develop by a process of endothelial-to hematopoietic transition of a specialized population of endothelial cells. These hemogenic endothelium (HE) cells in turn develop from a primitive population of FLK1 mesodermal cells. Endoglin (ENG) is an accessory TGF-β receptor that is enriched on the surface of endothelial and hematopoietic stem cells an...

متن کامل

Expression and function of CD105 during the onset of hematopoiesis from Flk1(+) precursors.

During ontogeny, the hematopoietic system is established from mesoderm-derived precursors; however, molecular events regulating the onset of hematopoiesis are not well characterized. Several members of the transforming growth factor beta (TGF-beta) superfamily have been implicated as playing a role during mesoderm specification and hematopoiesis. CD105 (endoglin) is an accessory receptor for me...

متن کامل

Atorvastatin-induced endothelial nitric oxide synthase expression in endothelial cells is mediated by endoglin.

Endoglin, a transforming growth factor β (TGF-β) receptor type III, is co-expressed with endothelial nitric oxide synthase (eNOS) in aortic endothelium in atherosclerotic plaques of mice. Interestingly, atorvastatin (ATV) is able to increase both endoglin and eNOS expression and reduce plaque size beyond its lipid lowering effects but by unknown mechanisms. We hypothesized whether inflammation ...

متن کامل

The physiological role of endoglin in the cardiovascular system.

Endoglin (CD105) is an integral membrane glycoprotein that serves as a coreceptor for members of the transforming growth factor-β superfamily of proteins. A major role for endoglin in regulating transforming growth factor-β-dependent vascular remodeling and angiogenesis has been postulated based on the following: 1) endoglin is the gene mutated in hereditary hemorrhagic telangiectasia type 1, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015